

TECHNICAL SPECIFICATION

Housing	PA66GF30 plastic	E1 approval	ECE R10 057522	
Connector	9-pin bottom panel	Electrical tests	Acc. to ISO 16750-2: Short Circuit supply I/O lines Reverse Polarity Interrupt Pin Break plug Jump Start	
Weight	28 g			
Temperature range (according to ISO 167504)	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			
Environmental protection	IP 6K8, when watertight socket is used and the mounting direction is correct		Acc. to ISO 16750-4: Long-term overvoltage at $65^{\circ} \mathrm{C}$ Storage Test Tmax and Tmin Operations Test Tmax and Tmin	
Current consumption	35 mA (at 12 V) 40 mA (at 24 V)			
Over-current Protection	Current consumption + load current		Acc. to ISO 7637:	
Total Inputs and outputs	4		Car pulses 1 to 4 to ECE R10	
Inputs	Configurable as: Analog (0...11.4 V/0...33.7 V) Current input ($0 . . .24 \mathrm{~mA}$) Frequency input	SOFTWARE/PROGRAMMING		
Outputs	Configurable as: Constant voltage source Analog voltage output	Programming System		
		MRS Developers Studio MRS Developers Studio with built-in functions library, similar programming with FUP. Custom software blocks can be integrated into "C-code". Program memory is sufficient for about 300 basic logic components.		
Operating voltage	9-32 V			
Starting voltage	8 V			
Overvoltage protection	$\geq 33 \mathrm{~V}$			
Undervoltage cut-off	$\leq 8 \mathrm{~V}$			
Quiescent current	$20 \mu \mathrm{~A}$ (at 12 V and 24 V)			
Reverse polarity protection	Yes			
CAN Interfaces	Highspeed $2.0 \mathrm{~A} / \mathrm{B}$ according to ISO 11898-2			

INPUT FEATURES - SUMMARY

Pin 1, 3	Usable as analog or digital input Resolution Accuracy	$\begin{aligned} & 12 \text { Bit } \\ & 1 \% \text { full scale } \end{aligned}$	Pin 5, 8	Usable as analog or digital input Resolution Accuracy	$\begin{aligned} & 12 \text { Bit } \\ & 1 \% \text { full scale } \end{aligned}$
Voltage input 0...11.4 V (see "A")	Input resistance Input frequency Accuracy Conversion factor	$\begin{aligned} & 500 \Omega \\ & \mathrm{f}_{\mathrm{g}}=30 \mathrm{~Hz} \\ & \pm 3 \% \\ & 3 \text { (33 Digits } \approx 100 \\ & \mathrm{mV}, \mathrm{~S} .5 \text {) } \end{aligned}$	Voltage input $0 . . .11 .4 \text { V (see "A") }$	Input resistance Input frequency Accuracy Conversion factor	$\begin{aligned} & 500 \Omega \\ & f_{g}=30 \mathrm{~Hz} \\ & \pm 3 \% \\ & 3 \text { (33 Digits } \approx 100 \\ & \mathrm{mV}, \mathrm{~S} .5) \end{aligned}$
Voltage input 0...33.6 V (see "B")	Input resistance Input frequency Accuracy Conversion factor	$\begin{aligned} & 500 \Omega \\ & \mathrm{f}_{\mathrm{g}}=75 \mathrm{~Hz} \\ & \pm 3 \% \\ & 8,8 \text { (12 Digits } \approx \\ & 100 \mathrm{mV}, \mathrm{~S} .5) \end{aligned}$	Voltage input 0...33.6 V (see "B")	Input resistance Input frequency Accuracy Conversion factor	$\begin{aligned} & 500 \Omega \\ & \mathrm{f}_{\mathrm{g}}=75 \mathrm{~Hz} \\ & \pm 3 \% \\ & 8,8 \text { (12 Digits } \approx \\ & 100 \mathrm{mV}, \mathrm{~S} .5) \end{aligned}$
Digital input	Input resistance Turn-on threshold (11.4 V) Turn-off threshold (11.4 V) Turn-on threshold (33.6 V) Turn-off threshold (33.6 V)	$\begin{aligned} & 500 \Omega \\ & 7 \mathrm{~V} \\ & 5.5 \mathrm{~V} \\ & 20.5 \mathrm{~V} \\ & 15.6 \mathrm{~V} \end{aligned}$	Digital input	Input resistance Turn-on threshold (11.4 V) Turn-off threshold (11.4 V) Turn-on threshold (33.6 V) Turn-off threshold (33.6 V)	$\begin{aligned} & 500 \Omega \\ & 7 \mathrm{~V} \\ & 5.5 \mathrm{~V} \\ & 20.5 \mathrm{~V} \\ & 15.6 \mathrm{~V} \end{aligned}$
Current input $0 . . .24 \text { mA (see "C") }$	Input resistance Conversion factor	$\begin{aligned} & 500 \Omega \\ & \approx 0,0175(580 \\ & \text { Digits } \approx 10 \mathrm{~mA}, \\ & \mathrm{~S} .5) \end{aligned}$	Current input $0 . . .24 \text { mA (see "C") }$	Input resistance Conversion factor	$\begin{aligned} & 500 \Omega \\ & \approx 0,0175(580 \\ & \text { Digits } \approx 10 \mathrm{~mA}, \\ & \mathrm{S.5}) \end{aligned}$
Frequency input (see "D")	Input resistance Accuracy Turn-on threshold (11.4 V) Turn-off threshold (11.4 V) Turn-on threshold (33.6 V) Turn-off threshold (33.6 V)	500Ω Up to 5 kHz max. ± 3 \% 7 V 5.5 V 20.5 V 15.6 V	${ }^{1}$ cutoff frequency (-3 ${ }^{2}$ When programming read in parallel.	B) via C-code, both frequ	y inputs can be

CONFIGURATION OF INPUTS

Desired Configuration	Setting via
Voltage input 0-11.4 V AI_NAME	DO_I_NAME $=0$, DO_30V_10V_NAME $=0$, PWM_20MA_NAME $=0$
Voltage input 0-33.6 V AI_NAME	DO_I_NAME $=0, D O _30 V _10 \mathrm{~V}$ _NAME $=1$, PWM_20MA_NAME $=0$
Analog voltage output $/$ current input	Set: DO_I_NAME $=1$, PWM_20MA_NAME $(0-100 \%=0-U B$-3v $)$
Current output	Set: DO_I_NAME $=0$, PWM_20MA_NAME $(0-100 \%=0-22 \mathrm{~mA})$
Frequency input $(X$ and C)	Reading of the input frequency via FREQ_NAME

OUTPUT FEATURES - SUMMARY

Pin 1,3,5,8

Digital, positive	Switching voltage	UB $_{-3 v}$
switching	Switching current	25 mA
	Analog voltage output	Deviation $\pm 3 \%$

PIN ASSIGNMENT POWER SUPPLY AND INTERFACES

Pin	Pin description	Pin	Pin description
2	Supply voltage	7	CAN -H
4	Battery/ignition contact 15	9	CAN - L
6	Ground		

PIN ASSIGNMENT INPUTS AND OUTPUTS

Pin	Programm signal	Pin description	Pin	Programm signal	Pin description
1	DI_X	Digital input X	5	DI_87A	Digitale input 87A
	AI_X	Analog input X		Al_87A	Analog input 87A
	DO_30V_10V_X	Range selection 11.4/33.6 V		DO_30V_10V_87A	Range selection 11.4/33.6 V
	DO_I_X	Current sink X		DO_I_87A	Current sink 87A
	PWM_20MA_X	Current output X		PWM_20MA_87A	Current output 87A
		Analog voltage output Frequency input X			Analog voltage output
	FREQ_X		8	DI_87	Digital input 87
3	DI_C	Digital input C		Al_87	Analog input 87
	Al_C	Analog input C		DO_30V_10V_87	Range selection 11.4/33.6 V
	DŌ_30V_10V_C	Range selection 11.4/33.6 V		DO_1_87	Current sink 87
	DO_I_C	Current sink C		PWM_20MA_87	Current output 87
	PWM_20MA_C	Current output C			Analog voltage output
	FREQ_C	Analog voltage output Frequency input C			

Bottom view

PIN FEATURE MAP

analog/digital inputs/outputs												
Pin	Digital Input	Analog Input	Range select		Current sink	Frequency			Current-/Analogvoltage output			
1	DI_X	AI_X	DO_30V_10V_X		DO_I_X	FREQ_X ${ }^{\text {P }}$			PWM_20MA_X			
3	DI_C	AI_C	DO_30V_10V_C		DO_I_C	FREQ_C P			PWM_20MA_C			
5	DI_87A	AI_87A	DO_30V_10V_87A		DO_I_87A				PWM_20MA_87A			
8	DI_87	Al_87	DO_30V_10V_87		DO_I_87	Interfaces			PWM_20MA_87			
			ECU Freescale S9S08DZ60 Clock frequency: 8 MHz Flash: 60 K RAM: 4 K EEPROM: 2 K									
						Pin	Signal	Description				
							CAN-L	CAN Bus high				
						9	CAN-H	CAN Bus low				
					4							
				Power	er Supply							
			Pin	Signal	Description							
			2	KL30 S	Supply voltage							
			4	KL15 İg	Ignition							
			6	G	GND							

BLOCK FUNCTION DIAGRAM

TECHNICAL DRAWING IN MM [INCH]

CONVERSION FACTOR

ASSEMBLY OPTIONS AND ORDER INFORMATION

Order number	Pin numbering of the inputs				CAN Bus		Remarks
	A Voltage $0-11.4 \mathrm{~V}$	$\begin{gathered} \hline \text { B } \\ \text { Voltage } \\ 0-33.6 \text { V } \end{gathered}$	C Current $0-24 \mathrm{~mA}$	D Frequency $0-5.5 \mathrm{kHz}$	High-Speed	Low-Speed	
$\begin{aligned} & 1.112 .300 .00 \\ & \text { 1.112P.300.00 } \end{aligned}$	$\begin{aligned} & 1,3,5,8 \\ & 1,3,5,8 \end{aligned}$	$\begin{aligned} & 1,3,5,8 \\ & 1,3,5,8 \end{aligned}$	$\begin{aligned} & 1,3,5,8 \\ & 1,3,5,8 \end{aligned}$	$\begin{aligned} & 1,3 \\ & 1,3 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$		CANopen

ACCESSORIES

Description	Order number
Programming tool MRS Developers Studio	1.100 .100 .09
Cable set to programm CAN 4 ANA	109446
Socket ST FL 9-pin $5 \times 6.3 / 4 \times 2.8$	1.017 .002 .00
Socket package watertight 40 mm	114265
FASTON terminal $6.3 \mathrm{~mm} 1.5-2.5 \mathrm{~mm}^{2}$	103064
FASTON terminal $6.3 \mathrm{~mm} 1.0 \mathrm{~mm}^{2}$	102355
FASTON terminal $2.8 \mathrm{~mm} 0.5-1.0 \mathrm{~mm}^{2}$	105292
Housing bracket	1.017 .08 .00
PCAN-USB Interface	105358
Cabel FLRY $2 \times 0.5 \mathrm{~mm}^{2}$ white/green SL20	113085

MANUFACTURER

MRS Electronic GmbH \& Co. KG
Klaus-Gutsch-Str. 7
78628 Rottweil
Germany

NOTES ON WIRING AND CABLE ROUTING

CAN bus communication is the main communication between the control unit and the vehicle. Therefore, connect the CAN bus with special care and check the correct communication with the vehicle to avoid undesired behavior.

The control must be protected against overload (see performance data)

SAFETY AND INSTALLATION INFORMATION

It is essential to read the instructions in full thoroughly before working with the device.
Please note and comply with the instructions in the operating instructions and the information in the device data sheet, see www.mrs-electronic.com Staff qualification: Only staff with the appropriate qualifications may work on this device or in its proximity.
SAFETY
(WARNING! Danger as a result of a malfunction of the entire system.
Unforeseen reactions or malfunctions of the entire system may jeopardise the safety of people or the machine.

- Ensure that the device is equipped with the correct software and that the wiring and settings on the hardware are appropriate.

WARNING! Danger as a result of unprotected moving components.

Unforeseen dangers may occur from the entire system when putting the device into operation and maintaining it.

- Switch the entire system off before carrying out any work and prevent it from unintentionally switching back on.
- Before putting the device into operation, ensure that the entire system and parts of the system are safe.
- The device should never be connected or separated under load or voltage.

A

CAUTION! Risk of burns from the housing.

The temperature of the device housing may be elevated.

- Do not touch the housing and let all system components cool before working on the system.

PROPER USE

The device is used to control or switch one or more electrical systems or sub-systems in motor vehicles and machines and may only be used for this purpose. The device may only be used in an industrial setting.
A

WARNING!Danger caused by incorrect use.

The device is only intended for use in motor vehicles and machines.

- Use in safety-related system parts for personal protection is not permitted.
- Do not use the device in areas where there is a risk of explosion.

Correct use:

- operating the device within the operating areas specified and approved in the associated data sheet.
- strict compliance with these instructions and no other actions which may jeopardise the safety of individuals or the functionality of the device.

Obligations of the manufacturer of entire systems

It is necessary to ensure that only functional devices are used. If devices fail or malfunction, they must be replaced immediately.
System developments, installation and the putting into operation of electrical systems may only be carried out by trained and experienced staff who are sufficiently familiar with the handling of the components used and the entire system.
It is necessary to ensure that the wiring and programming of the device does not lead to safety-related malfunctions of the entire system in the event of a failure or a malfunction. System behaviour of this type can lead to a danger to life or high levels of material damage.
The manufacturer of the entire system is responsible for the correct connection of the entire periphery (e.g. cable cross sections, correct selection/ connection of sensors/actuators).

Opening the device, making changes to the device and carrying out repairs are all prohibited. Changes or repairs made to the cabling can lead to dangerous malfunctions. Repairs may only be carried out by MRS.

Installation

The installation location must be selected so the device is exposed to as low a mechanical and thermal load as possible. The device may not be exposed to any chemical loads.
Install the device in such a manner that the plugs point downwards. This means condensation can flow off the device. Single seals on the cables/leads must be used to ensure that no water gets into the device.

Putting into operation

The device may only be put into operation by qualified staff. This may only occur when the status of the entire system corresponds to the applicable guidelines and regulations.

FAULT CORRECTION AND MAINTENANCE

i NOTE The device is maintenance-free and may not be opened.

- If the device has damage to the housing, latches, seals or flat plugs, it must be taken out of operation.

Fault correction and cleaning work may only be carried out with the power turned off. Remove the device to correct faults and to clean it.
Check the integrity of the housing and all flat plugs, connections and pins for mechanical damage, damage caused by overheating, insulation damage and corrosion. In the event of faulty switching, check the software, switches and settings.
Do not clean the device with high pressure cleaners or steam jets. Do not use aggressive solvents or abrasive substances.

