

DESCRIPTION

The versatile CAN I/O PLC with 14 inputs and outputs impresses with its compact design and its operating voltage range of 9 to 30 volts. It provides 8 I/Os that can be configured as inputs or outputs and 6 analog inputs.

TECHNICAL DATA

Housing	plastic	E1 Approval	ECE R10 058238 (for rev. F, see Connector	22 pin Molex Mini Fit Junior

INPUT FEATURES - SUMMARY

Pin 3, 4, 5, 6, 7	Usable as analog or digital input Resolution Accuracy	$\begin{aligned} & 12 \text { Bit } \\ & \pm 1 \% \text { full scale } \end{aligned}$	Frequency input (see D)	Input resistance Input frequency Turn-on threshold	$\begin{aligned} & 22.6 \mathrm{k} \Omega \\ & \pm 3 \% \text { accuracy at } \\ & \leq 2.2 \mathrm{kHz} \\ & 7 \mathrm{~V} \end{aligned}$
Voltage input	Input resistance	$\begin{aligned} & 22.6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}=60 \mathrm{~Hz} \\ & \pm 3 \% \end{aligned}$		Turn-off threshold	4.5 V
$0 . .11,4 \mathrm{~V}($ see $\underline{\text { A }}$)	Input frequency Accuracy		Digital input Positive (see B)	Input resistance Input frequency	$\begin{aligned} & 66.6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}{ }^{*}=40 \mathrm{~Hz} \end{aligned}$
Current input $0 . . .24,5 \mathrm{~mA}$ (see	Input resistance Input frequency	$\begin{aligned} & 500 \Omega \\ & 40 \mathrm{~Hz} \\ & 1 \mathrm{~mA} \cong 475 \text { digits } \end{aligned}$		Turn-on threshold Turn-off threshold	$\begin{aligned} & 19 \mathrm{~V} \\ & 14 \mathrm{~V} \end{aligned}$
Frequency (see D)	Input resistance Input frequency	$\begin{aligned} & 22.6 \mathrm{k} \Omega \\ & \pm 3 \% \text { accuracy at } \\ & \leq 2.2 \mathrm{kHz} \\ & 7 \mathrm{~V} \\ & 4.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Pin 13,14,15,16, } \\ & 18,19 \end{aligned}$	Resolution Accuracy	$\begin{aligned} & 12 \text { Bit } \\ & \pm 1 \% \text { full scale } \end{aligned}$
	Input frequency Turn-on threshold Turn-off threshold		Voltage input $0 . .11,4 \mathrm{~V}$ (see E $)$	Input resistance Input frequency Accuracy	$\begin{aligned} & 22.6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}^{*}=60 \mathrm{~Hz} \\ & \pm 5 \% \end{aligned}$
Digital input positive (see \underline{A})	Input resistance Input frequency Turn-on threshold Turn-off threshold	$\begin{aligned} & 22,6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}^{*}=60 \mathrm{~Hz} \\ & 7 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	Digital input positive (see E)	Input resistance Input frequency Turn-on threshold Turn-off threshold	$\begin{aligned} & 22.6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}^{*}=60 \mathrm{~Hz} \\ & 7 \mathrm{~V} \\ & 4,5 \mathrm{~V} \end{aligned}$
Pin 2	Usable as analog or digital input Resolution Accuracy	$\begin{aligned} & 12 \text { Bit } \\ & \pm 1 \% \text { fulll scale } \end{aligned}$	Pin 20, 21	Usable as digital input Resolution Accuracy	$\begin{aligned} & 12 \text { Bit } \\ & \pm 1 \% \text { full scale } \end{aligned}$
Voltage input $0 . . .33,68 \mathrm{~V}($ see $\underline{B})$	Input resistance Input frequency Accuracy	$\begin{aligned} & 66.6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}^{*}=40 \mathrm{~Hz} \\ & \pm 3 \% \end{aligned}$	Digital input Positive (see E)	Input resistance Input frequency Turn-on threshold	$\begin{aligned} & 22.6 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{c}}{ }^{*}=60 \mathrm{~Hz} \\ & 7 \mathrm{~V} \end{aligned}$
Current input $0 . . .24,5 \mathrm{~mA}$ (see C)	Input resistance Input frequency Conversion factor	$\begin{aligned} & 470 \Omega \\ & 40 \mathrm{~Hz} \\ & 1 \mathrm{~mA} \cong 475 \text { digits } \end{aligned}$		Turn-off threshold	4,5 V

${ }^{*} f_{c}=$ cutoff frequency $(-3 \mathrm{~dB})$
OUTPUT FEATURES - SUMMARY

Pin 13, 14	Protective circuit for inductive loads	Optional integrated	$\begin{aligned} & \text { Pin Pin 15, 16, 18, } \\ & 19,20,21 \end{aligned}$	Protective circuit for inductive loads	Optional integrated
	Wire fault diagnostics	Possible via current sense		Wire fault diagnostics	Possible via current sense
	Short circuit diagnostics	Possible via current sense		Short circuit diagnostics	Possible via current sense
Digital, positive switching (High-Side; see E)	Switching voltage Switching current	$\begin{aligned} & 9-32 \mathrm{~V} \text { DC } \\ & 0.02-2.5 \mathrm{~A} \end{aligned}$	DiGital, positive switching (High-Side; see E)	Switching voltage Switching curent Conversion factor	$\begin{aligned} & 9-30 \mathrm{~V} \text { DC } \\ & 0.02-2.5 \mathrm{~A} \end{aligned}$
Short circuit	The switching-off is controlled by high-side driver (separate for each channel)			current sense	Digit $\xlongequal{=} 2.26 \mathrm{~mA}$
resistance against GND and V_{B}	de driver (separate fo	ach channel)	PWM-output (see F)	Output frequency Duty cycle Resolution Switching current	$\begin{aligned} & 500 \mathrm{~Hz} \\ & 0 \ldots .1000 \% \\ & 1 \% \\ & \leq 2.5 \mathrm{~A} \text { (see p. } 4 \text {) } \end{aligned}$
			Short circuit protection against ground and V_{B}	Switching-off is controlled via high side driver (separate for each channel)	

PIN ASSIGNMENT POWER SUPPLY AND INTERFACES

| Pin | Description | | Pin | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Ground / contact 31 according to DIN 72552 | | 9 | CAN bus high |
| 8 | Battery/ignition contact 15 according to DIN 72552 | 10 | | CAN bus low |
| 12 | Supply voltage for output pins 13 through 16, ope-
 rating voltage for CPU | 11 | RS 485 - A / RS232 Tx / ground (assembly option,
 otherwise not connected) | |
| 17 | Supply voltage for output pins 18 through 21, ope-
 rating voltage for CPU | 22 | RS-485 - B / RS232 Rx / 5 VREF / 3 VREF (as-
 sembly option, otherwise not connected) | |

PIN ASSIGNMENT IN- AND OUTPUTS

The alternative functions like frequency/current/pull-up or PT1000-inputs depends on the assembly variants (see table on page 6).

Pin	Signal	Description	Pin	Signal	Description
2	ANA5 / D_ANA5	Analog input 5; 0-33.68 V can also be used as digital input	15	$\begin{aligned} & \text { ANA_IO2 / D_IN2 } \\ & \text { OUT_HSD2 } \end{aligned}$	Analog/digital input IO2; 0-11.4 V or digital output DO2 with PWM capability
3	ANA4 / D_ANA4	Analog input 4; 0-11.4 V can also be used as digital input	16	ANA_IO3 / D_IN3 OUT_HSD3	Analog/digital input IO3; 0-11.4 V or digital output DO3 with PWM capability
4	ANA3 / D_ANA3	Analog input 3; 0-11.4 V can also be used as digital input			
5	ANA2 / D_ANA2	Analog input 2; 0-11.4 V can also be used as digital input	18	ANA_IO4 / D_IN4 OUT_HSD4	Analog/digital input IO4; 0-11.4 V or digital output DO4 with PWM capability
6	ANA1 / D_ANA1	Analog input 1; 0-11.4 V can also be used as digital input	19	ANA_IO5 / D_IN5 OUT_HSD5	Analog/digital input IO5; 0-11.4 V or digital output DO5 with PWM capability
7	ANAO / D_ANAO	Analog input 0; 0-11.4 V can also be used as digital input			
13	ANA_IOO / D_INO OUT_HSDO	Analog/digital input IOO or digital output DOO	20	$\begin{aligned} & \text { D_IN6 } \\ & \text { OUT_HSD6 } \end{aligned}$	Digital input IO6; 0-11.4 V or digital output DO6 with PWM capability
14	ANA_IO1 / D_IN1 OUT_HSD1	Analog/digital input IO1; 0-11.4 V or digital output DO1	21	$\begin{aligned} & \text { D_IN7 } \\ & \text { OUT_HSD7 } \end{aligned}$	Digital input IO7; 0-11.4 V or digital output DO7 with PWM capability

PIN FEATURE MAP

BLOCK FUNCTION DIAGRAM

TECHNICAL DRAWING IN MM [IN INCH]

ASSEMBLY VARIANTS AND ORDERING INFORMATIONS

	INPUT PINS						OUTPUT PINS		CAN BUS		INTERFACE		DC/DC
	A Voltage 0-11,4 V	B Voltage 0-33 V	C Current $\begin{gathered} 0-24,5 \\ \mathrm{~mA} \end{gathered}$	D Frequency	Sensor $10 k \Omega$ Pull-up	Inputs PT1000 $1 \mathrm{k} \Omega$ Pullup	E I/O's (can be used as analog or digital inputs or as digital outputs)	$\begin{gathered} \text { F } \\ \mathrm{PWM} \leq 500 \mathrm{~Hz} \end{gathered}$	High Speed	CAN open	RS485	RS232	5 Volt / 3 Volt Reference
1.033.300.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21		X				
1.033.302.0001	3,5,6,7			2,4			13,14,15,16,18,19,20,21		X				
1.033.303.0001	3,4	2	5,6,7				13,14,15,16,18,19,20,21		X				
1.033.304.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				
1.033.305.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				5V 22/11
1.033.306.0001	3,4	2	5,6,7				13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				
1.033.308.0001		2,3,4,5,6,7					13,14,15,16,18,19,20,21		X				
1.033.309.0001	3,5,6,7			2,4			13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				
1.033.30B. 0001	3,4	2			5,6,7		13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				5V 22/11
1.033.30C. 0001	3,4	2			5,6,7		13,14,15,16,18,19,20,21		X				
1.033.30D. 0001	3,4	2				5,6,7	13,14,15,16,18,19,20,21		X				
1.033.30E. 0001	3,5,6,7			2,4			13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				
1.033.30K. 0001	3,5,6,7			2,4			13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				$5 \mathrm{~V} 22 / 11$
1.033.30N. 0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				3V 22/11
1.033.30P. 0001	3,4	2				5,6,7	13,14,15,16,18,19,20,21	15,16,18,19,20,21	X				
1.033.320.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21		X		X		
1.033.330.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21		X			X	
1.033P.300.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21		X	x			
1.033P.305.0001	3,4,5,6,7	2					13,14,15,16,18,19,20,21	15,16,18,19,20,21	X	X			22/11

ACCESSORIES

Description	Order Number
Programming tool MRS Developer Studio	1.100 .100 .09
Cable set CAN I/O	106817
Connector package CAN I/O	106940
PCAN-USB Interface	105358

MANUFACTURER

MRS Electronic GmbH \& Co. KG
Klaus-Gutsch-Str. 7
78628 Rottweil

NOTES ON WIRING AND CABLE ROUTING

The electronic system and the power outputs of a control unit must be supplied by the same power supply system.

PWM outputs may not be connected with each other or bypassed.

The pins (I/Os) can be used in combination and may not be switched externally against a higher voltage level than supply voltage.

NOTES ON WIRING AND CABLE ROUTING

Higside outputs may only be switched to ground.

The sensor supplies can be "lifted" through an external circuitry, for example the creation of higher voltage, as they only work as a voltage source but not as voltage drain. The lift of a voltage source may lead to unforeseen malfunctions and damages of the control unit in case of permanent operation.

CAN bus communication is the main communication between the control unit and the vehicle. Therefore, connect the CAN bus with special care and check the correct communication with the vehicle to avoid undesired behavior.

SAFETY AND INSTALLATION INFORMATION

It is essential to read the instructions in full thoroughly before working with the device.
Please note and comply with the instructions in the operating instructions and the information in the device data sheet, see www.mrs-electronic.com Staff qualification: Only staff with the appropriate qualifications may work on this device or in its proximity.
SAFETY

WARNING! Danger as a result of a malfunction of the entire system.

Unforeseen reactions or malfunctions of the entire system may jeopardise the safety of people or the machine.

- Ensure that the device is equipped with the correct software and that the wiring and settings on the hardware are appropriate.
WARNING! Danger as a result of unprotected moving components.
Unforeseen dangers may occur from the entire system when putting the device into operation and maintaining it.
- Switch the entire system off before carrying out any work and prevent it from unintentionally switching back on.
• Before putting the device into operation, ensure that the entire system and parts of the system are safe.
- The device should never be connected or separated under load or voltage.

A

CAUTION! Risk of burns from the housing.

The temperature of the device housing may be elevated.

- Do not touch the housing and let all system components cool before working on the system.

PROPER USE

The device is used to control or switch one or more electrical systems or sub-systems in motor vehicles and machines and may only be used for this purpose. The device may only be used in an industrial setting.

! WARNING!Danger caused by incorrect use.
 The device is only intended for use in motor vehicles and machines.

- Use in safety-related system parts for personal protection is not permitted.
- Do not use the device in areas where there is a risk of explosion.

Correct use:

- operating the device within the operating areas specified and approved in the associated data sheet.
- strict compliance with these instructions and no other actions which may jeopardise the safety of individuals or the functionality of the device.

Obligations of the manufacturer of entire systems

It is necessary to ensure that only functional devices are used. If devices fail or malfunction, they must be replaced immediately.
System developments, installation and the putting into operation of electrical systems may only be carried out by trained and experienced staff who are sufficiently familiar with the handling of the components used and the entire system.
It is necessary to ensure that the wiring and programming of the device does not lead to safety-related malfunctions of the entire system in the event of a failure or a malfunction. System behaviour of this type can lead to a danger to life or high levels of material damage.
The manufacturer of the entire system is responsible for the correct connection of the entire periphery (e.g. cable cross sections, correct selection/ connection of sensors/actuators).
Opening the device, making changes to the device and carrying out repairs are all prohibited. Changes or repairs made to the cabling can lead to dangerous malfunctions. Repairs may only be carried out by MRS.

Installation

The installation location must be selected so the device is exposed to as low a mechanical and thermal load as possible. The device may not be exposed to any chemical loads.
Install the device in such a manner that the plugs point downwards. This means condensation can flow off the device. Single seals on the cables/leads must be used to ensure that no water gets into the device.

Putting into operation

The device may only be put into operation by qualified staff. This may only occur when the status of the entire system corresponds to the applicable guidelines and regulations.

FAULT CORRECTION AND MAINTENANCE

(i) NOTE The device is maintenance-free and may not be opened.

- If the device has damage to the housing, latches, seals or flat plugs, it must be taken out of operation.

Fault correction and cleaning work may only be carried out with the power turned off. Remove the device to correct faults and to clean it.
Check the integrity of the housing and all flat plugs, connections and pins for mechanical damage, damage caused by overheating, insulation damage and corrosion. In the event of faulty switching, check the software, switches and settings.
Do not clean the device with high pressure cleaners or steam jets. Do not use aggressive solvents or abrasive substances.

